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INTRODUCTION 
In traffic signal control, compared to the Time of Day (TOD) operation, the practice of using 
Traffic Responsive Plan Selection (TRPS) mode of operation is limited due to the simple and 
easy configuration of TOD mechanism. However, traffic patterns do change regularly on an 
hourly, daily or monthly basis, and TRPS mode of operation provides the flexibility of 
accommodating those traffic conditions by selecting the best suitable plan to minimize delay and 
stops and hence improve the overall system efficiency. TRPS mode also does not need timing 
plans to be updated as frequently as the TOD mode does, since the variations in traffic are 
incorporated into the mechanism while developing the plans. The TOD mode on the other hand 
does not offer this flexibility as the timing plans are pre-selected based on the time of the day. It 
is assumed that the traffic patterns are recurrent in time based on weekdays/weekends, etc. Hence 
variations in traffic conditions, such as special events/holidays, construction/work zone detours, 
random change in traffic patterns etc., do result in large delays and stops in the network under 
the TOD mode. The TOD timing plans have to be updated frequently based on the changes in 
traffic patterns making the procedure time consuming and labor intensive. 

Past research have shown great potential and advantages of TRPS mode over TOD mode. 
Accurate sensing of traffic and performing accurate traffic state estimation is vital for the 
implementation of TRPS. The input data for state estimation is obtained mainly through the 
system detectors, while additional real-time traffic data can also be obtained through several 
other sources such as Bluetooth devices, connected/autonomous vehicles, etc. In the current 
study, an attempt is made to perform traffic state estimation while using system detector data and 
connected vehicles data (in the form of queue lengths obtained from simulation) from a given 
network. 

Counts (volume) and occupancy (percentage of time the detector was occupied by vehicles) data 
mainly collected from system detectors in the network are currently widely used in practice to 
measure/analyze the traffic conditions. The emergence of Connected Vehicles (CV)/Autonomous 
Vehicles (AV) provides a new opportunity for obtaining real-time traffic data as these vehicles 
can transmit valuable information such as speed, position (based on which queue lengths can be 
obtained), etc., and these can further be used to estimate the current state of the system. While 
obtaining traffic data from multiple sources is now possible, there has to be a methodology of 
incorporating and processing such valuable data and deriving a single measure to identify 
different traffic states/conditions. 

In the current study, a corridor from Morgantown, WV was selected for analysis. Traffic data 
from multiple sources were collected and analyzed to identify different traffic states. The 
simulations for the network were conducted using VISSIM 9, and the analysis was performed in 
MATLAB and Statistical Analysis Software (SAS). A discussion regarding past research in 
traffic state estimation and traffic signal control is provided in the next section. 

BACKGROUND 
Several data sources are currently available and in practice to obtain traffic data. This array 
includes field loop detectors, video cameras, infrared detectors, radar based detectors, Bluetooth 
sensors, probe vehicles equipped with Global Positioning System (GPS), 
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Connected/Autonomous vehicles, advanced communication systems such as Vehicle to Vehicle 
(V2V), Vehicle to infrastructure (V2I) etc. Hence, collection of traffic data through an automated 
system over long durations is now practically feasible. Such type of traffic data can be used for 
several traffic related applications such as traffic state estimation, traffic control and 
management/ traffic operations, Intelligent Transportation System (ITS) etc. Traffic control is 
one of the vital areas where traffic signals are widely used to regulate traffic. Two types of 
methodologies are widely considered in signal control, namely TOD mode and TRPS mode. 
Several studies have shown great potential of TRPS mode over TOD mode through research. 
TRPS mode heavily relies on accurate traffic sensing and the design of timing plans based on the 
thresholds developed/traffic states defined. Hence, accurate traffic state estimation can be 
considered as one of the primary stages of this methodology. Some studies that have reported 
different approaches in state estimation are discussed below. 

Box et al. [1] discussed a methodology for instantaneous state estimation of an urban traffic 
network where data from multiple sensors, including wireless devices and inductive loops was 
used. The state was considered to be an estimate of the current distribution of vehicles in the 
network and their instantaneous speeds and this was obtained using an Extended Kalman Filter 
(EKF) approach. The method had better performance while estimating the number of vehicles 
however the performance was reduced while obtaining average speed of vehicles. Liu and Di [2] 
reported a study on  traffic density estimation using fixed point data and GPS speed data on the 
signalized arterials. Srinivasan et al. [3] reported a study on the use of Neural Networks for real 
time traffic signal control. The study reported a multi agent system approach to develop 
distributed unsupervised traffic responsive signal control models by considering the local traffic 
signal controller for one intersection as an agent. The simulation study showed significant 
reduction in delays and mean stoppage time. Khan et al. [4] reported a study for real time traffic 
state estimation with the help of connected vehicles. The study focused on increasing the real-
time roadway traffic condition assessment accuracy by using connected vehicle technology and 
artificial intelligence. On comparison of the Level of Service estimation with the Caltrans 
Performance Measurement System (PeMS), the performance of this study was observed to be 
better. Mannini et al. [5] reported a study on a methodology to estimate route travel time based 
on historical and real-time data obtained from multiple sources that were obtained through 
advanced monitoring systems. The study used a second order macroscopic traffic flow model 
with an Extended Kalman Filter (EKF) approach with a data fusion technique while using 
simulated data. 

While the above studies have focused on the direct application of state estimates such as density, 
travel time etc., these estimates cannot be directly incorporated for TRPS operation. For TRPS 
operation, the real time data from field system detectors such as counts, occupancy, queue 
lengths, average speed etc., are vital. Use of on field system detectors is one of the widely 
practiced methods of obtaining data for traffic signal control. 

Abbas et al. [6] reported a study on the methodology for determining optimal traffic responsive 
plan selection control parameters.  The study focused on developing optimal timing plans that 
are suitable for a wide range of traffic conditions and mapping the different traffic conditions to 
one of the available timing plans which are stored in traffic controllers. The study mainly used 
genetic algorithms and discriminant analysis in the framework and the data used was from 
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system detectors placed in the field. Abbas and Abdelaziz [7] reported a study on evaluation of 
traffic responsive control for an arterial network while considering the issues of unequal traffic 
distribution and large combination of traffic movements from multiple intersections. The study 
implemented a multi-objective optimization method to generate final timing plans and TRPS 
pattern matching parameters. Count and occupancy data obtained from system detectors in the 
network were used in the framework. Abbas and Sharma [8] reported a study where they 
proposed use of a multi-objective evolutionary algorithm for optimizing the TOD plan 
scheduling, and proposed a new measure of performance namely Degree of Detachment (DOD) 
for providing a clustering mechanism of traffic patterns. The study made use of traffic data 
collected from system detectors. In another study, Abbas and Sharma [9] reported a new robust 
methodology for the selection of TRPS optimal parameters and thresholds by using Bayesian-
based discriminant analysis. While using field data collected through system detectors, this study 
reported a 100% classification accuracy using this approach. Abbas et al. [10] reported a 
methodology for TRPS operation using multi-objective evolutionary algorithm and supervised 
discriminant analysis. The study developed nine timing plans to be used with the TRPS mode 
and performed the tests with simulated data, and reported a possibility of 53% savings in delay 
and 16% savings in stops in comparison to TOD mode of operation. A study by Sharma [11] 
discussed methodology for determination of traffic responsive plan selection factors and 
thresholds using Artificial Neural Networks (ANN). The study used k-means clustering for 
identifying demand states and further determination of TRPS weights and thresholds was 
performed using ANN. The study used data from system detectors in the analysis. 

From the above studies it can be observed that system detectors placed in the field are widely 
used for sensing the traffic, developing timing plans based on different traffic states and then for 
real time implementation of TRPS operation. As discussed earlier, with the advent of data 
collection technologies, real time traffic data can now be collected from several sources. The 
challenge remains to utilize this data into the TRPS development and operational framework. 
The current study in this direction focused on using real time data from mobile vehicles (as 
CV/AV) that would soon occupy the traffic stream. Data from these vehicles can be vital in 
providing real time estimate of the traffic quality and several other measures. Queue length is 
one such variable that can provide vital information regarding the quality of traffic at the location 
where they are obtained. Several studies have reported estimation of queue lengths using the data 
obtained from probe or connected vehicles (Li et al. [12], Badillo et al. [13]), and reported their 
applications in adaptive signal control (Tiaprasert [14]), developing measures of effectiveness for 
determining traffic conditions on urban signalized arterials for real time applications (Argote 
[15]) etc. Use of queue lengths hence can be very viral in numerous traffic applications. 

However, not many studies have reported the fusion of such system detector/stationary sensor 
data and mobile vehicle data into the development and implementation of TRPS framework. In 
this study, counts and occupancy data from system detectors in combination with queue lengths 
obtained through VISSIM simulation is used to provide an estimate of traffic state. The queue 
length data can be assumed to be coming from connected vehicles in the future. Inclusion of such 
data from multiple sources can provide us with enhanced reliability regarding the traffic state and 
can be valuable for TRPS development and operation. 

A discussion regarding the study site and methodology is provided in subsequent sections. 
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STUDY SITE AND DATA COLLECTION 

Corridor description 
A corridor in Morgantown, WV was selected for the analysis in this study. The selected arterial 
consisted of five signalized intersections. A google maps image of the corridor and the 
intersections (circled and numbered for reference) are show in Figure 1, and the details are 
provided in Table 1. A VISSIM network of the selected corridor was provided for the analysis 
and the reference number of the signal controllers associated with each of the five intersections 
are also provided in Table 1. 

Figure 1 Study corridor and intersections (Source: Google maps) 

Table 1 Details about the intersections 

Intersection 
reference 
number 

Name Coordinates VISSIM Signal
controller 
number 

1 Chestnut Ridge road and North 
elementary school road 

39.658011, -79.956882 1010 

2 Chestnut Ridge road and 
Pineview drive 

39.658061, -79.954670 1011 

3 Chestnut Ridge road and 
Willowdale road 

39.656684, -79.952922 1012 

4 WV 705 and WVU Research 
Park 

39.655434, -79.944440 1013 

5 WV 705 and Stewartstown road 39.652665, -79.936807 1014 

Figure 2 and Figure 3 provide details regarding the placement and identification of system 
detectors in the network covering all the intersections, and the queue counters placed close to the 
intersections. 
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Figure 2 VISSIM network consisting of first three intersections, along with the location and identification of system detectors and 
queue counters 
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  Figure 3 VISSIM network consisting of remaining two intersections, along with the location and identification of system detectors and 

queue counters 
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Signal controller information 
The five Ring Barrier Control (RBC) signal controllers associated with five intersections in the 
corridor were set with the provided 10 different timing plans. The side street phase movements 
were set on detector actuation mode, meaning the side street would be served green only when a 
detector call was placed, else the main street movement would have the green. 

Data collection from VISSIM 
The total duration of this analysis was 15 hours (54000 seconds). Counts, occupancy, and queue 
lengths were the main variables used in this study for state estimation. Count and occupancy 
were obtained from 40 system detectors placed all over the network covering side streets and 
main arterial links as shown in Figure 2 and Figure 3 (identified with numbers: 160, 161 etc.). 
Queue lengths were obtained from the queue counters placed in the network as shown in Figure 
2 and Figure 3 (identified as: Q10101, Q20102 etc.). Counts, occupancy and average queue 
lengths were collected at every 10-minute interval. The simulations were run for all the 10 
different timing plans. These timing plans for each intersection are provided in the tables in 
Appendix I. 

OBJECTIVES AND SCOPE 

The key objectives identified for the study are: 

1. Develop a framework in MATLAB for data collection from system detectors and queue 
counters in VISSIM network, and obtain count, occupancy and queue length data. 

2. Perform a canonical discriminant analysis to identify weights associated with each of the 
variables used for obtaining three different plan selection (PS) parameters (namely cycle, 
offset, and split). 

3. Use the weights and input data, compute all three PS parameters associated with each 
observation, and further obtain discriminant functions for each state 

4. Determine the thresholds of PS parameter to switch from one state to another based on 
each PS parameter. 

5. Perform k-means clustering to identify similar traffic states that can be grouped together 
6. Perform a comparison analysis of the classification of states for data obtained at different 

penetration rates. 

The data collection, estimation and analysis in this study is performed for the corridor consisting 
of Chestnut Ridge road and WV 705 only, which include five signalized intersections. The 
current study would focus only on the traffic state estimation part. 

METHODOLOGY AND RESULTS 

The adopted methodology could be briefly described as: Obtaining count, occupancy and queue 
lengths from the network, obtaining weights for the selected variables, computing the plan 
selection parameter, obtaining discriminant functions for each state, and then identifying 
thresholds for switching between states. 
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Three PS parameters were estimated in this study at the cycle level, offset level, and split level. 
To calculate the cycle level PS parameter, the detectors located at critical locations were used. 
To calculate the offset level PS parameter, the detectors placed on arterials in the inbound and 
outbound directions were used. To calculate the split level PS parameter, the detectors placed on 
the non-arterials/side streets were used. Similar selection was applied to the queue counters in 
the network. The selected detectors at each level and the associated weights are represented in 
Table 5, Table 6, and Table 7. 

An important consideration in the study was to analyze the estimation accuracy at different 
penetration rates of the connected vehicles in the network. As queue lengths collected in this 
study through simulation represent the queue lengths obtained from connected vehicles in the 
real network, to obtain data at different penetration rates, results from Li et al., [12] for 
estimation of queue lengths at different penetration rates were used. These were used to 
introduce errors/generate perturbations in the ground truth queue lengths in the network. The 
queue lengths obtained through queue counters in VISSIM were considered as ground truth 
queue lengths as these are obtained from all the vehicles in the network, meaning data obtained 
at 100% penetration rate. Table 2 represents the error rates (Mean absolute percentage error: 
MAPE) used from Li et al., [12] in the current study to be introduced in the ground truth queue 
length data. 

Table 2 Error rates for queue lengths  at different penetration rates 

Penetration rate (%) Error rate (MAPE %) 
90 4.29 
80 6.35 
70 11.35 
60 14.26 
50 17.27 
40 24.95 
30 29.80 
20 42.15 
10 60.82 

Another important consideration was the selection of timing plans from the provided 10 different 
timing plans (Appendix I) for the simulations. In order to select data from the most suitable 
timing plans, initially the simulations were run for all the 10 timing plans for 15 hours (covering 
all states). From the simulations, the queuing delays were obtained from all the queue counters at 
five intersections, and sum of delays from all the queue counters was obtained for each hour 
(state). From these results, the optimal timing plans (based on the least delay) for each state as 
well as overall delays for all states are determined. Table 3 presents the computed delays. 

Table 3 Summary of sum of queuing delays (seconds) for each state and timing plan combination 

Timing 
plan 1 2 3 4 5 6 7 8 9 10 
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State 
1 3072.2 3280.9 3045.8 3107.9 3061.9 3156.3 3358.5 3498.8 4132.3 4342.7 
2 5334.1 5379.9 5691.1 5807.3 5770.2 5733.9 5920.2 6211.1 7023.6 6749.0 
3 9599.9 8463.5 10278.3 10318.6 9254.5 10819.3 10647.3 9789.1 12539.4 11654.2 
4 16296.3 14549.1 15930.1 15265.2 13962.4 16050.8 15645.3 14817.5 19799.7 17189.1 
5 14840.8 13886.5 14485.8 13978.7 12904.7 15332.3 14767.5 13456.1 17997.6 15624.5 
6 11430.7 11157.0 12019.8 11951.0 12068.1 12785.9 12135.6 11938.3 14501.1 13590.3 
7 11579.9 11092.0 11594.3 12000.5 11775.9 12049.7 12160.1 12140.0 14241.3 13881.6 
8 11173.4 11988.9 11800.6 11649.6 11782.8 12663.8 12379.9 12633.2 15146.4 14897.1 
9 11691.6 11989.8 12174.0 11978.6 11989.8 12448.3 11752.2 11813.6 15509.8 15030.9 

10 12086.7 12002.9 12863.3 12126.8 11967.1 13214.3 12892.5 13081.9 15390.3 15140.7 
11 11546.1 12041.4 12245.0 12033.8 11882.9 13200.1 12890.7 12595.4 16171.6 15509.6 
12 15862.4 17054.0 15901.4 16866.3 17727.3 15191.4 19692.6 16944.0 20589.3 26024.5 
13 12189.0 14974.1 16399.0 14370.4 14363.2 15115.6 16400.9 15268.8 21611.2 23544.5 
14 14147.5 14339.3 16644.9 15175.9 15380.7 16236.8 16887.6 15987.1 23351.2 19519.6 
15 10432.8 9527.2 9866.6 11070.5 10200.1 9793.1 10741.3 11333.4 13264.9 12292.4 

Total 171283.3 171726.4 180940.1 177701.0 174091.7 183791.8 188272.2 181508.3 231269.5 224990.7 

From Table 3, it can be observed that timing plans 1, 2, 5, 4 and 3 were the five timing plans that 
had low total delays. Fourteen out of fifteen states had one of these five timing plans as their 
optimal timing plan (respective optimal timing plan is highlighted in the table). State 12 had 
timing plan 6 as the optimal, but since timing plan 6 had a high overall total delay, it was not 
included in the analysis. Hence the final analysis included timing plans 1, 2, 5, 4 and 3. 

Weights associated with the selected variables 
As mentioned earlier, data were obtained from a total of 40 system detectors and 19 queue 
counters. Each detector provides count and occupancy value, hence resulting in 80 different 
variables. Adding the queue variable from 19 queue counters results in a set of 99 different 
explanatory variables for identifying a state. This study focused on estimating three PS 
parameters, namely at the cycle level, offset level and split level. Each of these parameters is 
calculated by using a set of/combination of system detectors as mentioned earlier. In order to 
have a strong discriminatory power to discriminate different states, each of the PS parameter can 
have different set of weights for the detectors used for computing them. 

A canonical discriminant analysis was performed on these variables to identify the weights 
associated with each variable for each PS parameter. Canonical discriminant analysis is a 
dimensionality reduction technique that provides a best linear combination of the selected 
variables by associating them with canonical coefficients. This linear combination is aimed at 
providing best discrimination among different classes considered. This procedure was performed 
in Statistical Analysis Software (SAS) package. Based on the data set and the number of 
explanatory variables, SAS provides a set of canonical variables along with their canonical 
relation value and the F-statistic value to identify the best canonical variable and its coefficients 
as weights. Table 4 provides statistics for these variables. 

Table 4 Statistics of canonical discriminant analysis 
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Cycle level Offset level Split level 

Canonical 
variable 

Canonical 
correlation F value 

Canonical 
correlation F value 

Canonical 
correlation F value 

1 0.988148 13.35 0.969998 11.18 0.977803 13.09 
2 0.974247 10.86 0.938643 8.73 0.950694 9.88 
3 0.970869 9.19 0.892373 7.08 0.889162 7.73 
4 0.920239 7.56 0.831391 5.95 0.837774 6.51 
5 0.903882 6.84 0.801373 5.22 0.801313 5.62 
6 0.892697 6.19 0.757573 4.54 0.757672 4.85 
7 0.870369 5.53 0.725813 3.97 0.742099 4.18 
8 0.853809 4.95 0.690599 3.4 0.646616 3.41 
9 0.825234 4.35 0.630088 2.84 0.609806 2.95 

10 0.793293 3.79 0.566473 2.36 0.519499 2.46 
11 0.775881 3.27 0.522335 1.96 0.470498 2.19 
12 0.720728 2.59 0.450459 1.52 0.427138 1.97 
13 0.589356 1.9 0.333566 1.11 0.389303 1.77 
14 0.543114 1.7 0.301104 1.01 0.33984 1.54 

From Table 4, it can be observed that the 1st canonical variable shows the highest correlation and 
significance as compared to other variables, hence the coefficients associated with the first 
canonical variable were used as the weights in further analysis. The associated raw weights for 
each variable are represented in Table 5 at the cycle level, in Table 6 at the offset level and in 
Table 7 at the split level. The prefix ‘C’ indicates count and ‘O’ indicates Occupancy, and it 
associated number indicates the system detector number from the VISSIM network. Similarly, 
the prefix ‘Q’ to the number indicates the queue counter. 

Table 5 Weights associated with variables for Cycle level PS parameter 

Variable Weight Variable Weight Variable Weight 
C160 0.012823 C221 -0.01307 O213 0.081337 
C161 0.022493 C228 -0.01493 O214 -0.30913 
C164 -0.00819 C229 -0.0211 O211 -0.0174 
C165 -0.02775 C225 0.006733 O212 -0.00266 
C163 -0.00447 C226 0.137672 O218 -0.01652 
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C166 0.02277 C227 0.045314 O219 0.010017 
C167 -0.0275 C233 -0.03215 O220 -0.04896 
C173 -0.01021 O160 0.062666 O221 -0.00485 
C174 0.014545 O161 -0.00601 O228 0.063536 
C171 0.022436 O164 -0.04067 O229 0.001499 
C172 -0.08179 O165 0.021055 O225 -0.00251 
C179 -0.00646 O163 -0.03439 O226 -0.0412 
C180 0.029782 O166 0.031304 O227 0.010071 
C181 -0.01045 O167 -0.03863 O233 -0.01187 
C182 0.017889 O173 0.056426 Q10101 -0.00547 
C190 -0.02498 O174 -0.01084 Q30103 0.02355 
C191 -0.0474 O171 0.036699 Q20102 0.003626 
C192 -0.00442 O172 -0.02151 Q10111 0.031809 
C187 0.194224 O179 -0.01496 Q30114 0.005809 
C188 0.010445 O180 -0.0369 Q20113 0.001673 
C189 0.043319 O181 -0.05087 Q40112 -0.00159 
C196 -0.1112 O182 -0.01081 Q10121 0.017052 
C197 -0.11233 O190 0.186809 Q30124 0.086474 
C198 0.156814 O191 0.723447 Q20123 0.001809 
C206 -0.03067 O192 -0.30666 Q40122 0.005281 
C207 -0.00901 O187 -0.01022 Q10131 0.055175 
C213 0.003324 O188 -0.01967 Q30134 0.112813 
C214 0.000993 O189 0.057904 Q20133 0.041674 
C211 0.063142 O196 -0.00138 Q40132 0.139214 
C212 0.032425 O197 -0.00454 Q10141 0.001864 
C218 -0.20455 O198 0.046534 Q30144 0.005244 
C219 0.072282 O206 -0.07412 Q20143 -0.02887 
C220 0.010385 O207 0.037479 Q40142 0.006214 

Table 6 Weights associated with variables for Offset level PS parameter 

Variable Weight Variable Weight Variable Weight 
C160 0.036604 C221 -0.02002 O213 0.399292 
C161 0.010756 C228 0.019361 O214 -0.60059 
C164 -0.0028 C229 -0.02235 O220 0.019982 
C165 0.012174 O160 0.048599 O221 0.017423 
C166 0.000969 O161 -0.02948 O228 -0.0173 

11 



 
 

      
      
      
      
      
      
      
      
      
      
      
      
      

 

   

      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      

        
 

  
 

  
 

 

 
 

 

C167 -0.02628 O164 -0.00019 O229 -0.04209 
C173 0.010304 O165 -0.04741 Q10101 -0.00386 
C174 0.022022 O166 -0.01942 Q20102 0.020244 
C181 -0.00739 O167 0.022414 Q10111 0.009861 
C182 0.013031 O173 0.022183 Q20113 -0.01313 
C190 -0.04155 O174 -0.00284 Q10121 0.021723 
C191 0.009709 O181 -0.05392 Q20123 -0.00254 
C192 -0.01416 O182 0.013201 Q10131 0.05147 
C206 0.02506 O190 0.26844 Q20133 -0.02834 
C207 0.039839 O191 0.022152 Q10141 0.000892 
C213 -0.02166 O192 -0.03672 Q20143 0.009029 
C214 0.00286 O206 -0.54569 
C220 0.025369 O207 0.050929 

Table 7 Weights associated with variables for split level PS parameter 

Variable Weight Variable Weight Variable Weight 
C163 -0.00524 O187 -0.00794 O218 0.050003 
C171 -0.04895 O188 -0.01262 O219 -0.00399 
C172 -0.07971 O189 0.104056 O225 0.003227 
C179 -0.01977 O196 0.006131 O226 -0.03833 
C180 -0.02567 O197 -0.00871 O227 0.069977 
C187 0.137047 O198 0.030515 O233 -0.01876 
C188 -0.01541 O211 -0.02237 Q30103 0.023213 
C189 0.01793 C226 0.14158 Q30114 0.003808 
C196 -0.10905 C227 0.011476 Q40112 0.02722 
C197 -0.09553 C233 -0.00275 Q30124 0.24804 
C198 0.140934 O163 -0.0086 Q40122 -0.013 
C211 0.025725 O171 0.035341 Q30134 -0.29938 
C212 -0.01125 O172 -0.01907 Q40132 0.308923 
C218 -0.1858 O179 -0.03011 Q30144 0.009652 
C219 0.051431 O180 -0.01295 Q40142 0.008849 

C225 -0.02359 O212 0.012112 

Discriminant functions for each state 

Discriminant functions developed for individual classes based on a parameter are mainly used to 
classify a future observation into one of the classes based on the same parameter. For a given 
observation, the class function that produces highest value is assigned as the class label for that 
observation. These functions can be tested on the known observation data and the accuracy of 
classification can be analyzed by comparing it with ground truth class labels. 
In the current study, the discriminant functions were developed for each of the 15 states for each 
of the three PS parameters. These discriminant functions were developed by using the data at 
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100% penetration rate. This was done based on the PS parameter value and the state label for 
each observation. PS parameter was computed as the sum of product of each variable with its 
assigned final weight. The discriminant functions at cycle, offset and split level are tabulated in 
Table 8. 

Table 8 Discriminant functions for each state at each PS parameter level 

Cycle Offset Split 

State Constant 

Coefficient of 
Cycle PS 

parameter Constant 

Coefficient of 
Offset PS 

parameter Constant 

Coefficient 
of Split PS 
parameter 

1 -1.45884 -1.70812 -0.57031 -1.068 -0.13413 -0.51794 
2 -16.2572 -5.70213 -5.52892 -3.32533 -2.18527 -2.09059 
3 -38.8449 -8.81418 -5.18146 -3.21915 -6.00138 -3.4645 
4 -27.1253 -7.3655 -0.53715 -1.03648 -8.62279 -4.15278 
5 -31.3072 -7.91292 -0.8176 -1.27875 -10.8204 -4.65196 
6 -26.4875 -7.2784 -1.33077 1.63143 -12.5867 -5.01731 
7 -10.1476 -4.50502 -5.87918 3.42905 -6.93857 -3.7252 
8 -3.84802 -2.77417 -11.0033 4.69112 -2.86341 -2.39308 
9 -1.69249 -1.83983 -10.6835 4.62243 -0.68006 -1.16624 

10 -2.09822 -2.04852 -12.3665 4.97323 -0.05266 -0.32452 
11 -10.5773 4.59941 -20.2313 6.36102 -6.44496 3.59025 
12 -79.054 12.5741 -42.7522 9.24686 -49.1953 9.9192 
13 -53.245 10.3194 -31.8044 7.97551 -43.6546 9.34394 
14 -7.99422 3.99855 -21.8464 6.61006 -7.2785 3.81536 
15 -0.48068 0.98049 -1.01149 1.42231 -0.43813 0.93609 

Figure 3 shows a plot of discriminant functions at the cycle level. It can be observed from Figure 
4 that that the discriminant functions intersect each other at a certain point which can be 
identified as a threshold for making transition from one to another state. 
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Figure 4 Plot of discriminant functions for Cycle PS parameter 
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Thresholds were hence identified based on the discriminant functions at each of the PS parameter 
level. The thresholds based on three variables for a single observation can help in accurately 
classifying the observation into one of the states. The threshold matrix was hence developed at 
each PS parameter level. These thresholds are tabulated in Table 9, Table 10 and Table 11for 
Cycle, Offset and Split level respectively. 

Table 9 Threshold matrix for Cycle PS parameter 

State 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 -3.71 -5.26 -4.54 -4.81 -4.49 -3.11 -2.24 -1.77 -1.88 1.45 5.43 4.31 1.15 -0.36 

2 -3.71 -7.26 -6.53 -6.81 -6.49 -5.10 -4.24 -3.77 -3.88 -0.55 3.44 2.31 -0.85 -2.36 

3 -5.26 -7.26 -8.09 -8.36 -8.05 -6.66 -5.79 -5.33 -5.43 -2.11 1.88 0.75 -2.41 -3.92 

4 -4.54 -6.53 -8.09 -7.64 -7.32 -5.94 -5.07 -4.60 -4.71 -1.38 2.60 1.48 -1.68 -3.19 

5 -4.81 -6.81 -8.36 -7.64 -7.60 -6.21 -5.34 -4.88 -4.98 -1.66 2.33 1.20 -1.96 -3.47 

6 -4.49 -6.49 -8.05 -7.32 -7.60 -5.89 -5.03 -4.56 -4.66 -1.34 2.65 1.52 -1.64 -3.15 

7 -3.11 -5.10 -6.66 -5.94 -6.21 -5.89 -3.64 -3.17 -3.28 0.05 4.03 2.91 -0.25 -1.76 

8 -2.24 -4.24 -5.79 -5.07 -5.34 -5.03 -3.64 -2.31 -2.41 0.91 4.90 3.77 0.61 -0.90 

9 -1.77 -3.77 -5.33 -4.60 -4.88 -4.56 -3.17 -2.31 -1.94 1.38 5.37 4.24 1.08 -0.43 

10 -1.88 -3.88 -5.43 -4.71 -4.98 -4.66 -3.28 -2.41 -1.94 1.28 5.26 4.14 0.98 -0.53 

11 1.45 -0.55 -2.11 -1.38 -1.66 -1.34 0.05 0.91 1.38 1.28 8.59 7.46 4.30 2.79 

12 5.43 3.44 1.88 2.60 2.33 2.65 4.03 4.90 5.37 5.26 8.59 11.45 8.29 6.78 

13 4.31 2.31 0.75 1.48 1.20 1.52 2.91 3.77 4.24 4.14 7.46 11.45 7.16 5.65 

14 1.15 -0.85 -2.41 -1.68 -1.96 -1.64 -0.25 0.61 1.08 0.98 4.30 8.29 7.16 2.49 

15 -0.36 -2.36 -3.92 -3.19 -3.47 -3.15 -1.76 -0.90 -0.43 -0.53 2.79 6.78 5.65 2.49 

Table 10 Threshold matrix for Offset  PS parameter 

State 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 -2.20 -2.14 -1.05 -1.17 0.28 1.18 1.81 1.78 1.95 2.65 4.09 3.45 2.77 0.18 

2 -2.20 -3.27 -2.18 -2.30 -0.85 0.05 0.68 0.65 0.82 1.52 2.96 2.33 1.64 -0.95 

3 -2.14 -3.27 -2.13 -2.25 -0.79 0.10 0.74 0.70 0.88 1.57 3.01 2.38 1.70 -0.90 

4 -1.05 -2.18 -2.13 -1.16 0.30 1.20 1.83 1.79 1.97 2.66 4.11 3.47 2.79 0.19 

5 -1.17 -2.30 -2.25 -1.16 0.18 1.08 1.71 1.67 1.85 2.54 3.98 3.35 2.67 0.07 

6 0.28 -0.85 -0.79 0.30 0.18 2.53 3.16 3.13 3.30 4.00 5.44 4.80 4.12 1.53 

7 1.18 0.05 0.10 1.20 1.08 2.53 4.06 4.03 4.20 4.90 6.34 5.70 5.02 2.43 

8 1.81 0.68 0.74 1.83 1.71 3.16 4.06 4.66 4.83 5.53 6.97 6.33 5.65 3.06 

9 1.78 0.65 0.70 1.79 1.67 3.13 4.03 4.66 4.80 5.49 6.93 6.30 5.62 3.02 

10 1.95 0.82 0.88 1.97 1.85 3.30 4.20 4.83 4.80 5.67 7.11 6.47 5.79 3.20 

11 2.65 1.52 1.57 2.66 2.54 4.00 4.90 5.53 5.49 5.67 7.80 7.17 6.49 3.89 

12 4.09 2.96 3.01 4.11 3.98 5.44 6.34 6.97 6.93 7.11 7.80 8.61 7.93 5.33 

13 3.45 2.33 2.38 3.47 3.35 4.80 5.70 6.33 6.30 6.47 7.17 8.61 7.29 4.70 

14 2.77 1.64 1.70 2.79 2.67 4.12 5.02 5.65 5.62 5.79 6.49 7.93 7.29 4.02 

15 0.18 -0.95 -0.90 0.19 0.07 1.53 2.43 3.06 3.02 3.20 3.89 5.33 4.70 4.02 
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Table 11 Threshold matrix for Split  PS parameter 

State 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 -1.30 -1.99 -2.34 -2.58 -2.77 -2.12 -1.46 -0.84 -0.42 1.54 4.70 4.41 1.65 0.21 

2 -1.30 -2.78 -3.12 -3.37 -3.55 -2.91 -2.24 -1.63 -1.21 0.75 3.91 3.63 0.86 -0.58 

3 -1.99 -2.78 -3.81 -4.06 -4.24 -3.59 -2.93 -2.32 -1.89 0.06 3.23 2.94 0.18 -1.26 

4 -2.34 -3.12 -3.81 -4.40 -4.59 -3.94 -3.27 -2.66 -2.24 -0.28 2.88 2.60 -0.17 -1.61 

5 -2.58 -3.37 -4.06 -4.40 -4.83 -4.19 -3.52 -2.91 -2.49 -0.53 2.63 2.35 -0.42 -1.86 

6 -2.77 -3.55 -4.24 -4.59 -4.83 -4.37 -3.71 -3.09 -2.67 -0.71 2.45 2.16 -0.60 -2.04 

7 -2.12 -2.91 -3.59 -3.94 -4.19 -4.37 -3.06 -2.45 -2.02 -0.07 3.10 2.81 0.05 -1.39 

8 -1.46 -2.24 -2.93 -3.27 -3.52 -3.71 -3.06 -1.78 -1.36 0.60 3.76 3.48 0.71 -0.73 

9 -0.84 -1.63 -2.32 -2.66 -2.91 -3.09 -2.45 -1.78 -0.75 1.21 4.38 4.09 1.32 -0.12 

10 -0.42 -1.21 -1.89 -2.24 -2.49 -2.67 -2.02 -1.36 -0.75 1.63 4.80 4.51 1.75 0.31 

11 1.54 0.75 0.06 -0.28 -0.53 -0.71 -0.07 0.60 1.21 1.63 6.75 6.47 3.70 2.26 

12 4.70 3.91 3.23 2.88 2.63 2.45 3.10 3.76 4.38 4.80 6.75 9.63 6.87 5.43 

13 4.41 3.63 2.94 2.60 2.35 2.16 2.81 3.48 4.09 4.51 6.47 9.63 6.58 5.14 

14 1.65 0.86 0.18 -0.17 -0.42 -0.60 0.05 0.71 1.32 1.75 3.70 6.87 6.58 2.38 

15 0.21 -0.58 -1.26 -1.61 -1.86 -2.04 -1.39 -0.73 -0.12 0.31 2.26 5.43 5.14 2.38 

An attempt was made to classify the observations into their corresponding states by using a 
single PS parameter. This resulted into 51.78% total misclassification error while using Cycle PS 
parameter, 65.56% total error while using Offset PS parameter and 64.44% total error while 
using Split PS parameter. This indicates that using only a single PS parameter to classify 
observations might not be sufficient and might not provide a good classification accuracy. 

Three dimensional approach for classifying observations 

Using a three dimensional approach for classifying the observations into their corresponding 
states can yield to a good classification accuracy, as the additional two dimensions can provide 
additional knowledge about the exactness of the state. For each observation in the data set, we 
now have three PS parameters (Cycle, Offset and Split) computed and a state label. This data 
was now used to perform a classification of the observations into different states. Table 12 
represents the discriminant functions obtained for the classification. For a particular observation, 
the state function that yields the highest value is assigned as the state label for that observation. 

Table 12 Discriminant functions with all three PS parameters 
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State Constant 

Coefficient 
of Cycle PS 
parameter 

Coefficient 
of Split PS 
parameter 

Coefficient 
of Offset PS 
parameter 

1 -1.95628 -2.63667 -0.12287 1.3948 
2 -20.1762 -8.44358 -0.1457 3.95989 
3 -48.8765 -14.3228 2.39014 6.00264 
4 -34.249 -11.4188 4.05093 2.74718 
5 -38.3097 -11.8307 4.08771 2.52993 
6 -46.8768 -12.1208 7.50792 1.33831 
7 -32.8519 -8.59532 7.87973 0.01028 
8 -29.5407 -7.33178 8.40406 0.28526 
9 -23.3769 -6.80161 7.74396 1.33424 

10 -29.8932 -8.94012 8.56422 3.44959 
11 -21.8678 0.72274 5.56506 1.39598 
12 -85.6875 8.73693 3.96261 2.50769 
13 -63.1217 4.97033 4.01224 4.59688 
14 -24.0363 -1.36917 6.46263 2.83823 
15 -1.15825 -0.16775 1.31 0.65993 

Table 13 represents the classification summary obtained from SAS. The total misclassification 
error based on the three PS parameters was reported to be 23.7%, which is significantly less as 
compared to the error while using a single PS parameter. It can be observed from Table 13 that 
ten states have more than 75% of their observations classified correctly (highlighted diagonal 
elements show correct classification into that state), but certain states show cross classifications. 
This might be largely due to similarity exhibited in terms of traffic characteristics among these 
states. Hence, a further investigation would be needed to identify as to which states can be 
combined together based on their similarity, such that it would enhance the classification 
accuracy without losing the importance of their existence as a separate state. In order to identify 
as to which states need to be combined based on their similarities, K-means clustering was 
performed by using mean values of the data representing each group. 
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   Table 13 Classification summary 
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 From 
 State  1 2  3  4  5  6  7  8  9   10  11  12  13  14  15  Total 

 1  30 
 100.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

 30 
 100.00 

 2  0 
 0.00 

 30 
 100.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

 30 
 100.00 

 3  0 
 0.00 

2  
 6.67 

 26 
 86.67 

2  
 6.67 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

 30 
 100.00 

 4  0 
 0.00 

0  
 0.00 

1  
 3.33 

 15 
 50.00 

 14 
 46.67 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

 30 
 100.00 

 5  0 
 0.00 

0  
 0.00 

2  
 6.67 

 14 
 46.67 

 11 
 36.67 

3  
 10.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

 30 
 100.00 

 6  0 
 0.00 

0  
 0.00 

0  
 0.00 

1  
 3.33 

0  
 0.00 

 27 
 90.00 

2  
 6.67 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

 30 
 100.00 

 7  0 
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

3  
 10.00 

 19 
 63.33 

7  
 23.33 

0  
 0.00 

1  
 3.33 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

 30 
 100.00 

 8  0 
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

9  
 30.00 

 14 
 46.67 

5  
 16.67 

2  
 6.67 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

 30 
 100.00 

 9  0 
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

3  
 10.00 

5  
 16.67 

 18 
 60.00 

4  
 13.33 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

 30 
 100.00 

 10  0 
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

2  
 6.67 

4  
 13.33 

 24 
 80.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

 30 
 100.00 

 11  0 
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 

 23 
 76.67 

0  
 0.00 

0  
 0.00 

7  
 23.33 
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0  
 0.00 

0  
 0.00 

0  
 0.00 

0  
 0.00 
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 96.67 

 30 
 100.00 

 Total  30 
6.67  
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7.11  

 29 
6.44  

 32 
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5.56  

 33 
7.33  

 33 
7.33  

 28 
6.22  

 28 
6.22  

 31 
6.89  

 29 
 6.44 

 29 
 6.44 

 31 
 6.89 

 31 
 6.89 

 29 
 6.44 
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 100.00 
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Grouping of states based on k-means clustering 
 

k-means clustering algorithm aims to classify a given dataset into certain number of user 
specified clusters. Figure 5 represents the mean of observations from each state which will be 
used in the k-means clustering process to find optimal number of clusters and to find which 
observations (states) can be grouped together.  

20 

 

 

 

Figure 5 Representation of all 15 states based on three PS parameters 

As the number of clusters increase, the total sum of within cluster distance decreases as well. 
However, it is essential to find the optimal number of clusters. Hence, the k-means algorithm 
was used to identify the total sum of within cluster distances for cluster sizes ranging from 5 to 
14. The lower limit 5 was based on the existence of 5 unique states that had at least 90% of their 
observations classified correctly (States 1, 2, 6, 13 and 15) which were verified from Table 13 
and Figure 5. Additionally, Silhouette value, which indicates how close each point in one cluster 
is to the points in the neighboring cluster was calculated. The Silhouette value ranges from -1 to 
1, where closeness to 1 indicates that the point is very far away from the neighboring cluster. 
Hence, mean value of all the clusters would provide us with adequate information as to how well 
are the clusters separated from each other, while expecting the value to be close to 1. Figure 6 
shows a plot of number of clusters (States) against the total sum of within cluster distances and 
mean Silhouette value. 
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Figure 6 Number of clusters vs Sum of within cluster distance and mean Silhouette value 

 
It can be observed from Figure 6 that as the cluster size increases, the sum of within cluster 
distance decreases significantly until a point from where the gain is minimal. Similarly, the 
Silhouette value increases with the number of clusters. It was observed that from cluster size 8, 
the gain in Silhouette value diminished, however the gain in sum of within cluster distance was 
significant until cluster size 12. Based on this result, it was decided to analyze the classification 
accuracy (or misclassification error) for cluster size 8, 9, 10, 11 and 12 by grouping the 
respective states suggested in each cluster after the k-means process. Table 14 presents a 
summary of the results for misclassification error against the cluster size. 
 

 Table 14 Summary of cluster size vs the classification accuracy 

Cluster size Total misclassification 
(No. of states) error (%) 

8 10.42 
9 6.28 
10 8.44 
11 8.48 
12 13.33 

 
It can be observed that with 9 clusters (states), the classification accuracy was highest among the 
considered cluster sizes. This was also supported with a reasonably good Silhouette value and 
lower total sum of within cluster distances. The 9 states were: 1, 2, (3, 4, 5), 6, 7, (8, 9, 10), (11, 
14), (12, 13) and 15. From Table 13 it can be clearly observed that states (3, 4, 5), (8, 9, 10), (11, 
14) and (12, 13) show cross classification of observations indicating that they share similar 
traffic characteristics. It can also be verified from Figure 5 that these states lie very close to each 
other resulting into them being grouped into a single cluster. Hence, these 9 states are suggested 
instead of the 15 original states that can produce a classification accuracy of up to 93%.   
 



 

Analysis at different market penetration rates 
 
As discussed earlier, the queue length data collected were considered as ground truth data (100% 
penetration rate), and perturbations were introduced into the data at different penetration rates 
(Table 2). The discriminant functions developed at 100% penetration rate were used to classify 
the observations and Figure 7 shows a plot of the total misclassification against the penetration 
rate. 
 

 

Figure 7 Penetration rate vs Misclassification error 

From Figure 7 it can be observed that as the penetration rate is increasing the misclassification 
error is decreasing which is obvious as the input data is free from errors. However, this result can 
be used to identify the minimum penetration rate of connected vehicles to be expected in the 
traffic stream to provide data that can result in accurate state estimation with a certain user 
defined accuracy. It can be observed from Figure 7 that the gain in classification accuracy 
becomes marginal beyond 50% penetration rate, indicating that at this rate of market penetration, 
accurate state estimation can be performed with a reasonable accuracy. 
 
 
 
 
 
 

ESTIMATING QUEUE LENGTHS  
 

In the analyses presented above, an indirect method is employed to reflect the impact of market 
penetration of CVs on the estimated queue lengths (see Table 2). Alternatively, queue length 
estimation could be made an integral part of the simulation environment where the market 
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penetration is a variable. In other words, in each simulation, the market penetration can be varied 
and a method could be employed to predict the queue lengths in real-time from the data of CVs 
which serve as probe vehicles. Since this approach will be more complex and computationally 
demanding it was not employed in this project. However, this section presents a potential method 
that can be integrated into a microscopic simulation model to predict the queue lengths in real-
time in future studies. This method is based on shockwave theory and is developed for under-
saturated conditions. For oversaturated conditions, a similar method could be developed as 
documented in the literature [16]. 

Methodology 
Figure 8 shows a sample shockwave diagram and the critical point Q that needs to be estimated. 
Point Q represents the maximum extent of the queue for this cycle. The goal is to predict the critical 
points Q for each cycle. The proposed methodology uses the shockwave theory to determine this 
unknown point. Essentially, if the speeds of the shockwaves representing the queue growth and 
dissipation are known, the problem can be solved using basic algebra. These unknown speeds need 
to be predicted using probe vehicle data. The time-space coordinates when probe vehicles join the 
back of the queue are denoted by !#" in the figure. These coordinates are the main source of data 
for estimating the shockwave speed and consequently the coordinate of point Q.  

To estimate the maximum queue for each cycle k, the probe vehicles (or CVs) joining the back of 
the queue (if any) are identified. First, a shockwave speed for queue dissipation based on the 
information obtained from previous cycles in the intersection is measured. Second, by using the 
probe time stamp and position where it joins the back of the queue (!#" in Figure 8), a shockwave 
speed based on each probe vehicle observation is calculated. Using an exponentially weighted 
moving average, the average shockwave speed for the probe vehicles arrivals is found. If the arrival 
of the last probe vehicle is before the end of the current red phase, a shockwave speed based on 
historical data for non-probe vehicles is also calculated. Using the shockwave speeds for queue 
formation and dissipation, the coordinates of point Q is determined. Once the coordinates of point 
Q is known, the queue length is set to Qx, the distance coordinate of point Q. With the estimated 
Q length, a k nearest neighbor algorithm trained based on historical data is used to detect the 
number of vehicles stopped behind the stop bar in the observed cycle. Historical data is then 
updated by adding the current cycle estimations and estimation for next cycle k+1 starts. Here, 
some notation and general relationships are introduced. 
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Figure 8 Observed time-space coordinates of sample probe vehicles joining the back of queue 
and their respective shockwave lines 

 

The shockwave speeds for a probe vehicle at the kth cycle is calculated as: 

 (Equation 1) 
 

where  

, = Space and time coordinates of the probe vehicle when joining the back of the queue 

, = Stop-bar location and start time of the red phase, respectively.  

Then, the moving average shockwave rate based on the first J probes ( ) is calculated as: 

 (Equation 2) 
 

in which the coefficient  represents the weight, a constant smoothing factor between 0 and 1. A 
higher  discounts older observations faster. is one of the model parameters which can be 
optimized using the previously observed data.  

After calculating the for the last probe observation in the kth cycle, the shockwave speed is 

also smoothed using the shockwave speed of the probe vehicles in k-1th cycle using: 

 
                            (Equation 

3) 
 

where is the smoothed inflow shockwave speed. After estimating the shockwave speeds, we 

can find the coordinates of the interest point Q by intersecting the two shockwave lines. 
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 (Equation 4) 
 

 

Not all cycles contain a probe vehicle. Furthermore, some cycles might only include very few 
probes. In the case which the last probe vehicle data is observed before the end of red phase, a new 
shockwave speed, representing the rate at which non-probe vehicles enter the intersection will be 
calculated to have a more accurate estimation of the queue length. When the last probe vehicle 
joins the queue before the end of the red phase, the probability that other non-probe vehicles would 
join the queue before the end of the cycle is greater. To account for the extra non-probe vehicles 
arriving after the arrival of the last observed probe vehicle, the shockwave speed for the non-probe 
vehicles in-flow rate is used. Figure 9 illustrates this case. Using simple geometry, the coordinates 
of point Q in this case can be calculated using: 

 

Figure 9- Observed time-space coordinates of probe and non-probe vehicle joining shockwave 
lines when the last probe arrives before the end of red phase 

 (Equation 5) 
 

 

where is the time when the last probe joined the back of the queue and the shockwave speed 

represents the rate at which non-probe vehicles enter the queue and is calculated based 

on the moving average rate of non-probe vehicles in-flow in previous cycles.  
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Results 
In order to show the application of the formulation given here and to test its performance in 

estimating queue lengths, a simple network is built in the microscopic simulation software 

VISSIM. A single one-lane link is created. A traffic signal with 60s of green and 30s of red (cycle 

length = 90s) is created at 600m location of the link. All vehicles are passenger cars with the 

desired speed of 55km/h and they enter the network at the rate of the demand profile shown in 

Figure 10 . Each car is generated via the COM interface of VISSIM and is fed to the simulation to 

ensure that the input follows the demand profile. The vehicles then follow the car following 

behavior of Wiedemann 99. Car following characteristics used for this simulation are shown in 

TABLE 15. Simulation resolution is set to ten times per second (step length = 0.1s). All other values 

are kept at the default values built within VISSIM.  

 

Figure 10-Vehicle Input of the simulation 

 

TABLE 15- Used parameters for Wiedemann 99 car following model 

CC0 CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 
1.5 0.9 4.0 -8.0 -.035 0.35 11.44 0.25 3.5 1.5 

 

Sensitivity analysis 
To evaluate the performance of the formulation developed here, several scenarios are considered. 
These scenarios are created by varying the available probe vehicle data in the simulation. Each 
vehicle that enters the network is designated to be probe or not based on a non-fair coin toss 
(Roulette wheel selection). As the arrivals of the probe vehicles are random, the variability in the 
arrivals is represented by 50 different simulations for each probe level. In order to have an accuracy 
measurement of the estimated data, the error in estimation is defined as:  

1 K ( 2k )å N k - NError = actual (Equation 6) 
K N k  

k=1 actual  
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where N k and N k
actual  are the estimated and actual number of vehicles stopped behind in the 

intersection in the kth cycle, respectively. K is the total number of cycles for estimation, which is 
50 cycles in this article.  

 

Figure 11- Notched boxplot of sensitivity analysis 

Figure 11 represents the notched box plot of the reduction in the error percentage as penetration 
rate increases. The notches in this diagram represent as the market penetration rate increases, the 
error in estimation decreases. However, it can be seen that beyond a relatively small penetration 
rate of 30%, the mean estimation error is not improved significantly. Moreover, the variations of 
error percentage in low market penetration rates, i.e. 5%, is substantially higher than those of 
higher penetration rates. In other words, we can be more certain about the mean error percentage 
as the penetration rate increases.  

In order to better understand the reasoning behind the variations in errors for different penetration 
rates, more in-depth study for each case has been carried out. As it can be seen from Figure 11, the 
highest variance is for 5% penetration rate where we can have error percentages as high as 90% or 
as low as 23%. Figure 12 shows the comparison between estimated queue lengths obtained from 
probe vehicle data (blue lines) and ground truth (diamond dots). As it can be seen in this figure, 
with an increase in the moving average of input vehicles starting at cycle number 8, in the best 
case scenario is able to catch up with this increase and can predict the increment in queue length 
amount accordingly. Although there are observable lags in adaptation of the model’s prediction 
based on the observed change in vehicle input average which is represented by the flat lines in the 
figure, the model is performing relatively well.  

In the worst case scenario, however, the model mistakenly predicts a low queue length at cycle 
number 15 and after 3 whole cycles starts to see the increase in vehicle input. The worst case 
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persistently predicts a greater queue length albeit the decrease in demand after the 30th cycle. This 
is because no new probe vehicle is stopped behind the signal to update the model’s estimation 
parameters.  

 

 

Figure 12 - Comparison between the best and worst case queue length estimations at market 
penetration rate of 5% for 50 cycles of simulation 

In the next step, we can look at the trajectories of the probe vehicles joining the back of the queue 
for cycles 9 through 20 (the area between the two dashed red lines in Figure 12), where the vehicle 
input is increasing. Figure 13 depicts the probe vehicle trajectories (red lines), queue length 
predictions (black lines), and ground truth queue lengths (green lines) for the best and worst case 
estimation scenarios at the market penetration rate of 5%. First, in the worst case scenario, more 
than half the vehicles do not stop behind the signal. At the same market penetration rate, a lower 
number of probe vehicles stopped behind the signal will provide less information to the model for 
estimation purposes. Second, in the worst case scenario there is a condensed density of probe 
vehicle arrivals in the short period between 12th and 14th cycle and no probe vehicle data obtained 
by the signal from 14th through 19th cycle. This non-homogenous distribution of probe vehicles 
leads to a greater number of blank cycles (cycles without any new information obtained from probe 
vehicles). Whereas in the best case scenario, a relatively uniform distribution of probe vehicle 
arrival is observed. Third, the stopped probe vehicles in the best case scenario have joined the back 
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of the queue at a later point in the cycle, providing more accurate information about the queue 
length. For example, the probe vehicles joining the queue in cycles 10, 15, and 18 are essentially 
giving the exact value of queue length in the best case, whereas the probe vehicle in cycles 12, 14 
or 19 of the worst case have joined in the middle of the queue.  

 

Figure 13 – Comparison between A) the best and B) the worst case vehicle trajectories for 
prediction at market penetration rate of 5% 

 

SUMMARY AND CONCLUSIONS 
 

In the current study, a framework to obtain counts, occupancy and queue lengths from the 
VISSIM network was developed. The study focused on estimating three PS parameters. This was 
done by selecting a particular set of detectors and queue counters for each PS parameter. The 
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best set of timing plans were selected based on total queue delay and these were used to obtain 
data for all the traffic states. Canonical discriminant analysis was performed to obtain weights 
associated with each variable for each PS parameter based on which the three PS parameters 
were obtained. These were then used to obtain discriminant functions to classify the observations 
into different states.  

Following a reasonable classification accuracy, k-means clustering approach was used to reduce 
the number of states by clustering similar traffic states together. Based on this analysis, 9 states 
were suggested instead of the original 15 states for which a 93% classification accuracy was 
obtained at 100% penetration rate. The developed functions were then used to perform 
classifications for data at different penetration rates and the corresponding misclassification 
errors rates were reported. It was observed that the gain in classification accuracy diminished at 
50% penetration rate. Overall, from this study it was demonstrated that queue length data can be 
a valuable source of information for traffic state estimation for implementation in TRPS 
framework. For future studies, the queue length could be estimated in real-time from the data 
provided by connected vehicles in the traffic stream, and these estimates could be used directly 
for system state estimation to support TRPS implementations. The report provided a potential 
queue length estimation method based on shockwave speeds and showed how the accuracy 
varies with market penetration rate of connected vehicles. Other methods for queue length 
estimation could also be considered in future studies.  
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APPENDIX I: Timing Plans 
 

 

Table 16 Phase times (splits) for controller 1010 

Plan 1 2 3 4 5 6 7 8 
1  45   30 13 32     

2  45   30 13 32     

3  60   30 13 47     

4  60   30 13 47     

5  60   30 13 47     

6  69   31 13 56     

7  70   30 13 57     

8  70   30 13 57     

9  111   39 15 96     

10  118   32 16 102     

 

 

Table 17 Phase times (splits) for controller 1011 

Plan 1 2 3 4 5 6 7 8 
 1 12 32   31 17 27   31 

 2 12 32   31 15 29   31 

 3 12 45   33 20 37   33 

 4 12 42   36 17 37   36 

 5 12 40   38 18 34   38 

 6 12 51   37 22 41   37 

 7 12 47   41 20 39   41 

 8 12 46   42 20 38   42 

 9 12 81   57 34 59   57 

 10 12 73   65 28 57   65 
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Table 18 Phase times (splits) for controller 1012 

Plan 1 2 3 4 5 6 7 8 
 1 12 31 12 20 12 31 12 20 

 2 19 27 13 16 12 34 12 17 

 3 14 39 14 23 12 41 12 25 

 4 18 37 13 22 12 43 12 23 

 5 21 36 14 19 15 42 12 21 

 6 16 44 14 26 12 48 12 28 

 7 21 41 14 24 12 50 12 26 

 8 23 41 16 20 16 48 12 24 

 9 25 67 20 38 16 76 12 46 

 10 36 63 25 26 23 76 13 38 

 

 

Table 19 Phase times (splits) for controller 1013 

Plan 1 2 3 4 5 6 7 8 
 1 12 32   19 12 32   12 

 2 12 39   12 12 39   12 

 3 12 38   28 12 38   12 

 4 12 36   25 12 36   17 

 5 12 48   18 12 48   12 

 6 12 42   34 12 42   12 

 7 12 40   30 12 40   18 

 8 12 53   21 12 53   14 

 9 12 55   68 12 55   15 

 10 12 77   43 12 77   18 
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Table 20 Phase times (splits) for controller 1014 

Plan 1 2 3 4 5 6 7 8 
 1 17 30 12 16 25 22   28 

 2 17 26 12 20 14 29   32 

 3 19 39 12 20 31 27   32 

 4 21 37 12 20 26 32   32 

 5 18 34 12 26 17 35   38 

 6 20 45 12 23 35 30   35 

 7 21 45 12 22 30 36   34 

 8 18 39 12 31 18 39   43 

 9 32 66 15 37 54 44   52 

 10 27 62 15 46 27 62   61 
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	INTRODUCTION 
	INTRODUCTION 
	In traffic signal control, compared to the Time of Day (TOD) operation, the practice of using Traffic Responsive Plan Selection (TRPS) mode of operation is limited due to the simple and easy configuration of TOD mechanism. However, traffic patterns do change regularly on an hourly, daily or monthly basis, and TRPS mode of operation provides the flexibility of accommodating those traffic conditions by selecting the best suitable plan to minimize delay and stops and hence improve the overall system efficiency
	Past research have shown great potential and advantages of TRPS mode over TOD mode. Accurate sensing of traffic and performing accurate traffic state estimation is vital for the implementation of TRPS. The input data for state estimation is obtained mainly through the system detectors, while additional real-time traffic data can also be obtained through several other sources such as Bluetooth devices, connected/autonomous vehicles, etc. In the current study, an attempt is made to perform traffic state estim
	Counts (volume) and occupancy (percentage of time the detector was occupied by vehicles) data mainly collected from system detectors in the network are currently widely used in practice to measure/analyze the traffic conditions. The emergence of Connected Vehicles (CV)/Autonomous Vehicles (AV) provides a new opportunity for obtaining real-time traffic data as these vehicles can transmit valuable information such as speed, position (based on which queue lengths can be obtained), etc., and these can further b
	In the current study, a corridor from Morgantown, WV was selected for analysis. Traffic data from multiple sources were collected and analyzed to identify different traffic states. The simulations for the network were conducted using VISSIM 9, and the analysis was performed in MATLAB and Statistical Analysis Software (SAS). A discussion regarding past research in traffic state estimation and traffic signal control is provided in the next section. 

	BACKGROUND 
	BACKGROUND 
	Several data sources are currently available and in practice to obtain traffic data. This array includes field loop detectors, video cameras, infrared detectors, radar based detectors, Bluetooth sensors, probe vehicles equipped with Global Positioning System (GPS), 
	Connected/Autonomous vehicles, advanced communication systems such as Vehicle to Vehicle (V2V), Vehicle to infrastructure (V2I) etc. Hence, collection of traffic data through an automated system over long durations is now practically feasible. Such type of traffic data can be used for several traffic related applications such as traffic state estimation, traffic control and management/ traffic operations, Intelligent Transportation System (ITS) etc. Traffic control is one of the vital areas where traffic si
	Box et al. [1] discussed a methodology for instantaneous state estimation of an urban traffic network where data from multiple sensors, including wireless devices and inductive loops was used. The state was considered to be an estimate of the current distribution of vehicles in the network and their instantaneous speeds and this was obtained using an Extended Kalman Filter (EKF) approach. The method had better performance while estimating the number of vehicles however the performance was reduced while obta
	While the above studies have focused on the direct application of state estimates such as density, travel time etc., these estimates cannot be directly incorporated for TRPS operation. For TRPS operation, the real time data from field system detectors such as counts, occupancy, queue lengths, average speed etc., are vital. Use of on field system detectors is one of the widely practiced methods of obtaining data for traffic signal control. 
	Abbas et al. [6] reported a study on the methodology for determining optimal traffic responsive plan selection control parameters.  The study focused on developing optimal timing plans that are suitable for a wide range of traffic conditions and mapping the different traffic conditions to one of the available timing plans which are stored in traffic controllers. The study mainly used genetic algorithms and discriminant analysis in the framework and the data used was from 
	system detectors placed in the field. Abbas and Abdelaziz [7] reported a study on evaluation of traffic responsive control for an arterial network while considering the issues of unequal traffic distribution and large combination of traffic movements from multiple intersections. The study implemented a multi-objective optimization method to generate final timing plans and TRPS pattern matching parameters. Count and occupancy data obtained from system detectors in the network were used in the framework. Abba
	From the above studies it can be observed that system detectors placed in the field are widely used for sensing the traffic, developing timing plans based on different traffic states and then for real time implementation of TRPS operation. As discussed earlier, with the advent of data collection technologies, real time traffic data can now be collected from several sources. The challenge remains to utilize this data into the TRPS development and operational framework. The current study in this direction foc
	However, not many studies have reported the fusion of such system detector/stationary sensor data and mobile vehicle data into the development and implementation of TRPS framework. In this study, counts and occupancy data from system detectors in combination with queue lengths obtained through VISSIM simulation is used to provide an estimate of traffic state. The queue length data can be assumed to be coming from connected vehicles in the future. Inclusion of such data from multiple sources can provide us w
	A discussion regarding the study site and methodology is provided in subsequent sections. 
	STUDY SITE AND DATA COLLECTION 

	Corridor description 
	Corridor description 
	A corridor in Morgantown, WV was selected for the analysis in this study. The selected arterial consisted of five signalized intersections. A google maps image of the corridor and the intersections (circled and numbered for reference) are show in Figure 1, and the details are provided in Table 1. A VISSIM network of the selected corridor was provided for the analysis and the reference number of the signal controllers associated with each of the five intersections are also provided in Table 1. 
	Figure
	Figure 1 Study corridor and intersections (Source: Google maps) Table 1 Details about the intersections 
	Intersection reference number 
	Intersection reference number 
	Intersection reference number 
	Name 
	Coordinates 
	VISSIM Signalcontroller number 

	1 
	1 
	Chestnut Ridge road and North elementary school road 
	39.658011, -79.956882 
	1010 

	2 
	2 
	Chestnut Ridge road and Pineview drive 
	39.658061, -79.954670 
	1011 

	3 
	3 
	Chestnut Ridge road and Willowdale road 
	39.656684, -79.952922 
	1012 

	4 
	4 
	WV 705 and WVU Research Park 
	39.655434, -79.944440 
	1013 

	5 
	5 
	WV 705 and Stewartstown road 
	39.652665, -79.936807 
	1014 


	Figure 2 and Figure 3 provide details regarding the placement and identification of system detectors in the network covering all the intersections, and the queue counters placed close to the intersections. 
	Figure
	Figure 2 VISSIM network consisting of first three intersections, along with the location and identification of system detectors and queue counters 
	5 
	5 

	Figure
	Figure 3 VISSIM network consisting of remaining two intersections, along with the location and identification of system detectors and queue counters 
	6 
	6 


	Signal controller information 
	Signal controller information 
	The five Ring Barrier Control (RBC) signal controllers associated with five intersections in the corridor were set with the provided 10 different timing plans. The side street phase movements were set on detector actuation mode, meaning the side street would be served green only when a detector call was placed, else the main street movement would have the green. 

	Data collection from VISSIM 
	Data collection from VISSIM 
	The total duration of this analysis was 15 hours (54000 seconds). Counts, occupancy, and queue lengths were the main variables used in this study for state estimation. Count and occupancy were obtained from 40 system detectors placed all over the network covering side streets and main arterial links as shown in Figure 2 and Figure 3 (identified with numbers: 160, 161 etc.). Queue lengths were obtained from the queue counters placed in the network as shown in Figure 2 and Figure 3 (identified as: Q10101, Q20

	OBJECTIVES AND SCOPE 
	OBJECTIVES AND SCOPE 
	The key objectives identified for the study are: 
	1. 
	1. 
	1. 
	Develop a framework in MATLAB for data collection from system detectors and queue counters in VISSIM network, and obtain count, occupancy and queue length data. 

	2. 
	2. 
	Perform a canonical discriminant analysis to identify weights associated with each of the variables used for obtaining three different plan selection (PS) parameters (namely cycle, offset, and split). 

	3. 
	3. 
	Use the weights and input data, compute all three PS parameters associated with each observation, and further obtain discriminant functions for each state 

	4. 
	4. 
	Determine the thresholds of PS parameter to switch from one state to another based on each PS parameter. 

	5. 
	5. 
	Perform k-means clustering to identify similar traffic states that can be grouped together 

	6. 
	6. 
	Perform a comparison analysis of the classification of states for data obtained at different penetration rates. 


	The data collection, estimation and analysis in this study is performed for the corridor consisting of Chestnut Ridge road and WV 705 only, which include five signalized intersections. The current study would focus only on the traffic state estimation part. 

	METHODOLOGY AND RESULTS 
	METHODOLOGY AND RESULTS 
	The adopted methodology could be briefly described as: Obtaining count, occupancy and queue lengths from the network, obtaining weights for the selected variables, computing the plan selection parameter, obtaining discriminant functions for each state, and then identifying thresholds for switching between states. 
	Three PS parameters were estimated in this study at the cycle level, offset level, and split level. To calculate the cycle level PS parameter, the detectors located at critical locations were used. To calculate the offset level PS parameter, the detectors placed on arterials in the inbound and outbound directions were used. To calculate the split level PS parameter, the detectors placed on the non-arterials/side streets were used. Similar selection was applied to the queue counters in the network. The selec
	An important consideration in the study was to analyze the estimation accuracy at different penetration rates of the connected vehicles in the network. As queue lengths collected in this study through simulation represent the queue lengths obtained from connected vehicles in the real network, to obtain data at different penetration rates, results from Li et al., [12] for estimation of queue lengths at different penetration rates were used. These were used to introduce errors/generate perturbations in the gr
	Table 2 Error rates for queue lengths  at different penetration rates 
	Penetration rate (%) 
	Penetration rate (%) 
	Penetration rate (%) 
	Error rate (MAPE %) 

	90 
	90 
	4.29 

	80 
	80 
	6.35 

	70 
	70 
	11.35 

	60 
	60 
	14.26 

	50 
	50 
	17.27 

	40 
	40 
	24.95 

	30 
	30 
	29.80 

	20 
	20 
	42.15 

	10 
	10 
	60.82 


	Another important consideration was the selection of timing plans from the provided 10 different timing plans (Appendix I) for the simulations. In order to select data from the most suitable timing plans, initially the simulations were run for all the 10 timing plans for 15 hours (covering all states). From the simulations, the queuing delays were obtained from all the queue counters at five intersections, and sum of delays from all the queue counters was obtained for each hour (state). From these results, 
	Table 3 Summary of sum of queuing delays (seconds) for each state and timing plan combination 
	Timing plan 
	Timing plan 
	Timing plan 
	1 
	2 
	3 
	4 
	5 
	6 
	7 
	8 
	9 
	10 

	State 
	State 

	1 
	1 
	3072.2 
	3280.9 
	3045.8 
	3107.9 
	3061.9 
	3156.3 
	3358.5 
	3498.8 
	4132.3 
	4342.7 

	2 
	2 
	5334.1 
	5379.9 
	5691.1 
	5807.3 
	5770.2 
	5733.9 
	5920.2 
	6211.1 
	7023.6 
	6749.0 

	3 
	3 
	9599.9 
	8463.5 
	10278.3 
	10318.6 
	9254.5 
	10819.3 
	10647.3 
	9789.1 
	12539.4 
	11654.2 

	4 
	4 
	16296.3 
	14549.1 
	15930.1 
	15265.2 
	13962.4 
	16050.8 
	15645.3 
	14817.5 
	19799.7 
	17189.1 

	5 
	5 
	14840.8 
	13886.5 
	14485.8 
	13978.7 
	12904.7 
	15332.3 
	14767.5 
	13456.1 
	17997.6 
	15624.5 

	6 
	6 
	11430.7 
	11157.0 
	12019.8 
	11951.0 
	12068.1 
	12785.9 
	12135.6 
	11938.3 
	14501.1 
	13590.3 

	7 
	7 
	11579.9 
	11092.0 
	11594.3 
	12000.5 
	11775.9 
	12049.7 
	12160.1 
	12140.0 
	14241.3 
	13881.6 

	8 
	8 
	11173.4 
	11988.9 
	11800.6 
	11649.6 
	11782.8 
	12663.8 
	12379.9 
	12633.2 
	15146.4 
	14897.1 

	9 
	9 
	11691.6 
	11989.8 
	12174.0 
	11978.6 
	11989.8 
	12448.3 
	11752.2 
	11813.6 
	15509.8 
	15030.9 

	10 
	10 
	12086.7 
	12002.9 
	12863.3 
	12126.8 
	11967.1 
	13214.3 
	12892.5 
	13081.9 
	15390.3 
	15140.7 

	11 
	11 
	11546.1 
	12041.4 
	12245.0 
	12033.8 
	11882.9 
	13200.1 
	12890.7 
	12595.4 
	16171.6 
	15509.6 

	12 
	12 
	15862.4 
	17054.0 
	15901.4 
	16866.3 
	17727.3 
	15191.4 
	19692.6 
	16944.0 
	20589.3 
	26024.5 

	13 
	13 
	12189.0 
	14974.1 
	16399.0 
	14370.4 
	14363.2 
	15115.6 
	16400.9 
	15268.8 
	21611.2 
	23544.5 

	14 
	14 
	14147.5 
	14339.3 
	16644.9 
	15175.9 
	15380.7 
	16236.8 
	16887.6 
	15987.1 
	23351.2 
	19519.6 

	15 
	15 
	10432.8 
	9527.2 
	9866.6 
	11070.5 
	10200.1 
	9793.1 
	10741.3 
	11333.4 
	13264.9 
	12292.4 

	Total 
	Total 
	171283.3 
	171726.4 
	180940.1 
	177701.0 
	174091.7 
	183791.8 
	188272.2 
	181508.3 
	231269.5 
	224990.7 


	From Table 3, it can be observed that timing plans 1, 2, 5, 4 and 3 were the five timing plans that had low total delays. Fourteen out of fifteen states had one of these five timing plans as their optimal timing plan (respective optimal timing plan is highlighted in the table). State 12 had timing plan 6 as the optimal, but since timing plan 6 had a high overall total delay, it was not included in the analysis. Hence the final analysis included timing plans 1, 2, 5, 4 and 3. 

	Weights associated with the selected variables 
	Weights associated with the selected variables 
	As mentioned earlier, data were obtained from a total of 40 system detectors and 19 queue counters. Each detector provides count and occupancy value, hence resulting in 80 different variables. Adding the queue variable from 19 queue counters results in a set of 99 different explanatory variables for identifying a state. This study focused on estimating three PS parameters, namely at the cycle level, offset level and split level. Each of these parameters is calculated by using a set of/combination of system 
	A canonical discriminant analysis was performed on these variables to identify the weights associated with each variable for each PS parameter. Canonical discriminant analysis is a dimensionality reduction technique that provides a best linear combination of the selected variables by associating them with canonical coefficients. This linear combination is aimed at providing best discrimination among different classes considered. This procedure was performed in Statistical Analysis Software (SAS) package. Ba
	Table 4 Statistics of canonical discriminant analysis 
	Table
	TR
	Cycle level 
	Offset level 
	Split level 

	Canonical variable 
	Canonical variable 
	Canonical correlation 
	F value 
	Canonical correlation 
	F value 
	Canonical correlation 
	F value 

	1 
	1 
	0.988148 
	13.35 
	0.969998 
	11.18 
	0.977803 
	13.09 

	2 
	2 
	0.974247 
	10.86 
	0.938643 
	8.73 
	0.950694 
	9.88 

	3 
	3 
	0.970869 
	9.19 
	0.892373 
	7.08 
	0.889162 
	7.73 

	4 
	4 
	0.920239 
	7.56 
	0.831391 
	5.95 
	0.837774 
	6.51 

	5 
	5 
	0.903882 
	6.84 
	0.801373 
	5.22 
	0.801313 
	5.62 

	6 
	6 
	0.892697 
	6.19 
	0.757573 
	4.54 
	0.757672 
	4.85 

	7 
	7 
	0.870369 
	5.53 
	0.725813 
	3.97 
	0.742099 
	4.18 

	8 
	8 
	0.853809 
	4.95 
	0.690599 
	3.4 
	0.646616 
	3.41 

	9 
	9 
	0.825234 
	4.35 
	0.630088 
	2.84 
	0.609806 
	2.95 

	10 
	10 
	0.793293 
	3.79 
	0.566473 
	2.36 
	0.519499 
	2.46 

	11 
	11 
	0.775881 
	3.27 
	0.522335 
	1.96 
	0.470498 
	2.19 

	12 
	12 
	0.720728 
	2.59 
	0.450459 
	1.52 
	0.427138 
	1.97 

	13 
	13 
	0.589356 
	1.9 
	0.333566 
	1.11 
	0.389303 
	1.77 

	14 
	14 
	0.543114 
	1.7 
	0.301104 
	1.01 
	0.33984 
	1.54 


	From Table 4, it can be observed that the 1canonical variable shows the highest correlation and significance as compared to other variables, hence the coefficients associated with the first canonical variable were used as the weights in further analysis. The associated raw weights for each variable are represented in Table 5 at the cycle level, in Table 6 at the offset level and in Table 7 at the split level. The prefix ‘C’ indicates count and ‘O’ indicates Occupancy, and it associated number indicates the 
	st 

	Table 5 Weights associated with variables for Cycle level PS parameter 
	Variable 
	Variable 
	Variable 
	Weight 
	Variable 
	Weight 
	Variable 
	Weight 

	C160 
	C160 
	0.012823 
	C221 
	-0.01307 
	O213 
	0.081337 

	C161 
	C161 
	0.022493 
	C228 
	-0.01493 
	O214 
	-0.30913 

	C164 
	C164 
	-0.00819 
	C229 
	-0.0211 
	O211 
	-0.0174 

	C165 
	C165 
	-0.02775 
	C225 
	0.006733 
	O212 
	-0.00266 

	C163 
	C163 
	-0.00447 
	C226 
	0.137672 
	O218 
	-0.01652 

	C166 
	C166 
	0.02277 
	C227 
	0.045314 
	O219 
	0.010017 

	C167 
	C167 
	-0.0275 
	C233 
	-0.03215 
	O220 
	-0.04896 

	C173 
	C173 
	-0.01021 
	O160 
	0.062666 
	O221 
	-0.00485 

	C174 
	C174 
	0.014545 
	O161 
	-0.00601 
	O228 
	0.063536 

	C171 
	C171 
	0.022436 
	O164 
	-0.04067 
	O229 
	0.001499 

	C172 
	C172 
	-0.08179 
	O165 
	0.021055 
	O225 
	-0.00251 

	C179 
	C179 
	-0.00646 
	O163 
	-0.03439 
	O226 
	-0.0412 

	C180 
	C180 
	0.029782 
	O166 
	0.031304 
	O227 
	0.010071 

	C181 
	C181 
	-0.01045 
	O167 
	-0.03863 
	O233 
	-0.01187 

	C182 
	C182 
	0.017889 
	O173 
	0.056426 
	Q10101 
	-0.00547 

	C190 
	C190 
	-0.02498 
	O174 
	-0.01084 
	Q30103 
	0.02355 

	C191 
	C191 
	-0.0474 
	O171 
	0.036699 
	Q20102 
	0.003626 

	C192 
	C192 
	-0.00442 
	O172 
	-0.02151 
	Q10111 
	0.031809 

	C187 
	C187 
	0.194224 
	O179 
	-0.01496 
	Q30114 
	0.005809 

	C188 
	C188 
	0.010445 
	O180 
	-0.0369 
	Q20113 
	0.001673 

	C189 
	C189 
	0.043319 
	O181 
	-0.05087 
	Q40112 
	-0.00159 

	C196 
	C196 
	-0.1112 
	O182 
	-0.01081 
	Q10121 
	0.017052 

	C197 
	C197 
	-0.11233 
	O190 
	0.186809 
	Q30124 
	0.086474 

	C198 
	C198 
	0.156814 
	O191 
	0.723447 
	Q20123 
	0.001809 

	C206 
	C206 
	-0.03067 
	O192 
	-0.30666 
	Q40122 
	0.005281 

	C207 
	C207 
	-0.00901 
	O187 
	-0.01022 
	Q10131 
	0.055175 

	C213 
	C213 
	0.003324 
	O188 
	-0.01967 
	Q30134 
	0.112813 

	C214 
	C214 
	0.000993 
	O189 
	0.057904 
	Q20133 
	0.041674 

	C211 
	C211 
	0.063142 
	O196 
	-0.00138 
	Q40132 
	0.139214 

	C212 
	C212 
	0.032425 
	O197 
	-0.00454 
	Q10141 
	0.001864 

	C218 
	C218 
	-0.20455 
	O198 
	0.046534 
	Q30144 
	0.005244 

	C219 
	C219 
	0.072282 
	O206 
	-0.07412 
	Q20143 
	-0.02887 

	C220 
	C220 
	0.010385 
	O207 
	0.037479 
	Q40142 
	0.006214 


	Table 6 Weights associated with variables for Offset level PS parameter 
	Variable 
	Variable 
	Variable 
	Weight 
	Variable 
	Weight 
	Variable 
	Weight 

	C160 
	C160 
	0.036604 
	C221 
	-0.02002 
	O213 
	0.399292 

	C161 
	C161 
	0.010756 
	C228 
	0.019361 
	O214 
	-0.60059 

	C164 
	C164 
	-0.0028 
	C229 
	-0.02235 
	O220 
	0.019982 

	C165 
	C165 
	0.012174 
	O160 
	0.048599 
	O221 
	0.017423 

	C166 
	C166 
	0.000969 
	O161 
	-0.02948 
	O228 
	-0.0173 

	C167 
	C167 
	-0.02628 
	O164 
	-0.00019 
	O229 
	-0.04209 

	C173 
	C173 
	0.010304 
	O165 
	-0.04741 
	Q10101 
	-0.00386 

	C174 
	C174 
	0.022022 
	O166 
	-0.01942 
	Q20102 
	0.020244 

	C181 
	C181 
	-0.00739 
	O167 
	0.022414 
	Q10111 
	0.009861 

	C182 
	C182 
	0.013031 
	O173 
	0.022183 
	Q20113 
	-0.01313 

	C190 
	C190 
	-0.04155 
	O174 
	-0.00284 
	Q10121 
	0.021723 

	C191 
	C191 
	0.009709 
	O181 
	-0.05392 
	Q20123 
	-0.00254 

	C192 
	C192 
	-0.01416 
	O182 
	0.013201 
	Q10131 
	0.05147 

	C206 
	C206 
	0.02506 
	O190 
	0.26844 
	Q20133 
	-0.02834 

	C207 
	C207 
	0.039839 
	O191 
	0.022152 
	Q10141 
	0.000892 

	C213 
	C213 
	-0.02166 
	O192 
	-0.03672 
	Q20143 
	0.009029 

	C214 
	C214 
	0.00286 
	O206 
	-0.54569 

	C220 
	C220 
	0.025369 
	O207 
	0.050929 


	Table 7 Weights associated with variables for split level PS parameter 
	Variable 
	Variable 
	Variable 
	Weight 
	Variable 
	Weight 
	Variable 
	Weight 

	C163 
	C163 
	-0.00524 
	O187 
	-0.00794 
	O218 
	0.050003 

	C171 
	C171 
	-0.04895 
	O188 
	-0.01262 
	O219 
	-0.00399 

	C172 
	C172 
	-0.07971 
	O189 
	0.104056 
	O225 
	0.003227 

	C179 
	C179 
	-0.01977 
	O196 
	0.006131 
	O226 
	-0.03833 

	C180 
	C180 
	-0.02567 
	O197 
	-0.00871 
	O227 
	0.069977 

	C187 
	C187 
	0.137047 
	O198 
	0.030515 
	O233 
	-0.01876 

	C188 
	C188 
	-0.01541 
	O211 
	-0.02237 
	Q30103 
	0.023213 

	C189 
	C189 
	0.01793 
	C226 
	0.14158 
	Q30114 
	0.003808 

	C196 
	C196 
	-0.10905 
	C227 
	0.011476 
	Q40112 
	0.02722 

	C197 
	C197 
	-0.09553 
	C233 
	-0.00275 
	Q30124 
	0.24804 

	C198 
	C198 
	0.140934 
	O163 
	-0.0086 
	Q40122 
	-0.013 

	C211 
	C211 
	0.025725 
	O171 
	0.035341 
	Q30134 
	-0.29938 

	C212 
	C212 
	-0.01125 
	O172 
	-0.01907 
	Q40132 
	0.308923 

	C218 
	C218 
	-0.1858 
	O179 
	-0.03011 
	Q30144 
	0.009652 

	C219 
	C219 
	0.051431 
	O180 
	-0.01295 
	Q40142 
	0.008849 

	C225 
	C225 
	-0.02359 
	O212 
	0.012112 



	Discriminant functions for each state 
	Discriminant functions for each state 
	Discriminant functions developed for individual classes based on a parameter are mainly used to classify a future observation into one of the classes based on the same parameter. For a given observation, the class function that produces highest value is assigned as the class label for that observation. These functions can be tested on the known observation data and the accuracy of classification can be analyzed by comparing it with ground truth class labels. In the current study, the discriminant functions 
	Discriminant functions developed for individual classes based on a parameter are mainly used to classify a future observation into one of the classes based on the same parameter. For a given observation, the class function that produces highest value is assigned as the class label for that observation. These functions can be tested on the known observation data and the accuracy of classification can be analyzed by comparing it with ground truth class labels. In the current study, the discriminant functions 
	100% penetration rate. This was done based on the PS parameter value and the state label for each observation. PS parameter was computed as the sum of product of each variable with its assigned final weight. The discriminant functions at cycle, offset and split level are tabulated in Table 8. 

	Table 8 Discriminant functions for each state at each PS parameter level 
	Table
	TR
	Cycle 
	Offset 
	Split 

	State 
	State 
	Constant 
	Coefficient of Cycle PS parameter 
	Constant 
	Coefficient of Offset PS parameter 
	Constant 
	Coefficient of Split PS parameter 

	1 
	1 
	-1.45884 
	-1.70812 
	-0.57031 
	-1.068 
	-0.13413 
	-0.51794 

	2 
	2 
	-16.2572 
	-5.70213 
	-5.52892 
	-3.32533 
	-2.18527 
	-2.09059 

	3 
	3 
	-38.8449 
	-8.81418 
	-5.18146 
	-3.21915 
	-6.00138 
	-3.4645 

	4 
	4 
	-27.1253 
	-7.3655 
	-0.53715 
	-1.03648 
	-8.62279 
	-4.15278 

	5 
	5 
	-31.3072 
	-7.91292 
	-0.8176 
	-1.27875 
	-10.8204 
	-4.65196 

	6 
	6 
	-26.4875 
	-7.2784 
	-1.33077 
	1.63143 
	-12.5867 
	-5.01731 

	7 
	7 
	-10.1476 
	-4.50502 
	-5.87918 
	3.42905 
	-6.93857 
	-3.7252 

	8 
	8 
	-3.84802 
	-2.77417 
	-11.0033 
	4.69112 
	-2.86341 
	-2.39308 

	9 
	9 
	-1.69249 
	-1.83983 
	-10.6835 
	4.62243 
	-0.68006 
	-1.16624 

	10 
	10 
	-2.09822 
	-2.04852 
	-12.3665 
	4.97323 
	-0.05266 
	-0.32452 

	11 
	11 
	-10.5773 
	4.59941 
	-20.2313 
	6.36102 
	-6.44496 
	3.59025 

	12 
	12 
	-79.054 
	12.5741 
	-42.7522 
	9.24686 
	-49.1953 
	9.9192 

	13 
	13 
	-53.245 
	10.3194 
	-31.8044 
	7.97551 
	-43.6546 
	9.34394 

	14 
	14 
	-7.99422 
	3.99855 
	-21.8464 
	6.61006 
	-7.2785 
	3.81536 

	15 
	15 
	-0.48068 
	0.98049 
	-1.01149 
	1.42231 
	-0.43813 
	0.93609 


	Figure 3 shows a plot of discriminant functions at the cycle level. It can be observed from Figure 4 that that the discriminant functions intersect each other at a certain point which can be identified as a threshold for making transition from one to another state. 
	Figure
	Figure 4 Plot of discriminant functions for Cycle PS parameter 
	14 
	Thresholds were hence identified based on the discriminant functions at each of the PS parameter level. The thresholds based on three variables for a single observation can help in accurately classifying the observation into one of the states. The threshold matrix was hence developed at each PS parameter level. These thresholds are tabulated in Table 9, Table 10 and Table 11for Cycle, Offset and Split level respectively. 
	Table 9 Threshold matrix for Cycle PS parameter 
	State 
	State 
	State 
	1 
	2 
	3 
	4 
	5 
	6 
	7 
	8 
	9 
	10 
	11 
	12 
	13 
	14 
	15 

	1 
	1 
	-3.71 
	-5.26 
	-4.54 
	-4.81 
	-4.49 
	-3.11 
	-2.24 
	-1.77 
	-1.88 
	1.45 
	5.43 
	4.31 
	1.15 
	-0.36 

	2 
	2 
	-3.71 
	-7.26 
	-6.53 
	-6.81 
	-6.49 
	-5.10 
	-4.24 
	-3.77 
	-3.88 
	-0.55 
	3.44 
	2.31 
	-0.85 
	-2.36 

	3 
	3 
	-5.26 
	-7.26 
	-8.09 
	-8.36 
	-8.05 
	-6.66 
	-5.79 
	-5.33 
	-5.43 
	-2.11 
	1.88 
	0.75 
	-2.41 
	-3.92 

	4 
	4 
	-4.54 
	-6.53 
	-8.09 
	-7.64 
	-7.32 
	-5.94 
	-5.07 
	-4.60 
	-4.71 
	-1.38 
	2.60 
	1.48 
	-1.68 
	-3.19 

	5 
	5 
	-4.81 
	-6.81 
	-8.36 
	-7.64 
	-7.60 
	-6.21 
	-5.34 
	-4.88 
	-4.98 
	-1.66 
	2.33 
	1.20 
	-1.96 
	-3.47 

	6 
	6 
	-4.49 
	-6.49 
	-8.05 
	-7.32 
	-7.60 
	-5.89 
	-5.03 
	-4.56 
	-4.66 
	-1.34 
	2.65 
	1.52 
	-1.64 
	-3.15 

	7 
	7 
	-3.11 
	-5.10 
	-6.66 
	-5.94 
	-6.21 
	-5.89 
	-3.64 
	-3.17 
	-3.28 
	0.05 
	4.03 
	2.91 
	-0.25 
	-1.76 

	8 
	8 
	-2.24 
	-4.24 
	-5.79 
	-5.07 
	-5.34 
	-5.03 
	-3.64 
	-2.31 
	-2.41 
	0.91 
	4.90 
	3.77 
	0.61 
	-0.90 

	9 
	9 
	-1.77 
	-3.77 
	-5.33 
	-4.60 
	-4.88 
	-4.56 
	-3.17 
	-2.31 
	-1.94 
	1.38 
	5.37 
	4.24 
	1.08 
	-0.43 

	10 
	10 
	-1.88 
	-3.88 
	-5.43 
	-4.71 
	-4.98 
	-4.66 
	-3.28 
	-2.41 
	-1.94 
	1.28 
	5.26 
	4.14 
	0.98 
	-0.53 

	11 
	11 
	1.45 
	-0.55 
	-2.11 
	-1.38 
	-1.66 
	-1.34 
	0.05 
	0.91 
	1.38 
	1.28 
	8.59 
	7.46 
	4.30 
	2.79 

	12 
	12 
	5.43 
	3.44 
	1.88 
	2.60 
	2.33 
	2.65 
	4.03 
	4.90 
	5.37 
	5.26 
	8.59 
	11.45 
	8.29 
	6.78 

	13 
	13 
	4.31 
	2.31 
	0.75 
	1.48 
	1.20 
	1.52 
	2.91 
	3.77 
	4.24 
	4.14 
	7.46 
	11.45 
	7.16 
	5.65 

	14 
	14 
	1.15 
	-0.85 
	-2.41 
	-1.68 
	-1.96 
	-1.64 
	-0.25 
	0.61 
	1.08 
	0.98 
	4.30 
	8.29 
	7.16 
	2.49 

	15 
	15 
	-0.36 
	-2.36 
	-3.92 
	-3.19 
	-3.47 
	-3.15 
	-1.76 
	-0.90 
	-0.43 
	-0.53 
	2.79 
	6.78 
	5.65 
	2.49 

	Table 10 Threshold matrix for Offset  PS parameter 
	Table 10 Threshold matrix for Offset  PS parameter 


	State 
	State 
	State 
	1 
	2 
	3 
	4 
	5 
	6 
	7 
	8 
	9 
	10 
	11 
	12 
	13 
	14 
	15 

	1 
	1 
	-2.20 
	-2.14 
	-1.05 
	-1.17 
	0.28 
	1.18 
	1.81 
	1.78 
	1.95 
	2.65 
	4.09 
	3.45 
	2.77 
	0.18 

	2 
	2 
	-2.20 
	-3.27 
	-2.18 
	-2.30 
	-0.85 
	0.05 
	0.68 
	0.65 
	0.82 
	1.52 
	2.96 
	2.33 
	1.64 
	-0.95 

	3 
	3 
	-2.14 
	-3.27 
	-2.13 
	-2.25 
	-0.79 
	0.10 
	0.74 
	0.70 
	0.88 
	1.57 
	3.01 
	2.38 
	1.70 
	-0.90 

	4 
	4 
	-1.05 
	-2.18 
	-2.13 
	-1.16 
	0.30 
	1.20 
	1.83 
	1.79 
	1.97 
	2.66 
	4.11 
	3.47 
	2.79 
	0.19 

	5 
	5 
	-1.17 
	-2.30 
	-2.25 
	-1.16 
	0.18 
	1.08 
	1.71 
	1.67 
	1.85 
	2.54 
	3.98 
	3.35 
	2.67 
	0.07 

	6 
	6 
	0.28 
	-0.85 
	-0.79 
	0.30 
	0.18 
	2.53 
	3.16 
	3.13 
	3.30 
	4.00 
	5.44 
	4.80 
	4.12 
	1.53 

	7 
	7 
	1.18 
	0.05 
	0.10 
	1.20 
	1.08 
	2.53 
	4.06 
	4.03 
	4.20 
	4.90 
	6.34 
	5.70 
	5.02 
	2.43 

	8 
	8 
	1.81 
	0.68 
	0.74 
	1.83 
	1.71 
	3.16 
	4.06 
	4.66 
	4.83 
	5.53 
	6.97 
	6.33 
	5.65 
	3.06 

	9 
	9 
	1.78 
	0.65 
	0.70 
	1.79 
	1.67 
	3.13 
	4.03 
	4.66 
	4.80 
	5.49 
	6.93 
	6.30 
	5.62 
	3.02 

	10 
	10 
	1.95 
	0.82 
	0.88 
	1.97 
	1.85 
	3.30 
	4.20 
	4.83 
	4.80 
	5.67 
	7.11 
	6.47 
	5.79 
	3.20 

	11 
	11 
	2.65 
	1.52 
	1.57 
	2.66 
	2.54 
	4.00 
	4.90 
	5.53 
	5.49 
	5.67 
	7.80 
	7.17 
	6.49 
	3.89 

	12 
	12 
	4.09 
	2.96 
	3.01 
	4.11 
	3.98 
	5.44 
	6.34 
	6.97 
	6.93 
	7.11 
	7.80 
	8.61 
	7.93 
	5.33 

	13 
	13 
	3.45 
	2.33 
	2.38 
	3.47 
	3.35 
	4.80 
	5.70 
	6.33 
	6.30 
	6.47 
	7.17 
	8.61 
	7.29 
	4.70 

	14 
	14 
	2.77 
	1.64 
	1.70 
	2.79 
	2.67 
	4.12 
	5.02 
	5.65 
	5.62 
	5.79 
	6.49 
	7.93 
	7.29 
	4.02 

	15 
	15 
	0.18 
	-0.95 
	-0.90 
	0.19 
	0.07 
	1.53 
	2.43 
	3.06 
	3.02 
	3.20 
	3.89 
	5.33 
	4.70 
	4.02 


	Table 11 Threshold matrix for Split  PS parameter 
	Table 11 Threshold matrix for Split  PS parameter 
	Table 11 Threshold matrix for Split  PS parameter 

	State 
	State 
	1 
	2 
	3 
	4 
	5 
	6 
	7 
	8 
	9 
	10 
	11 
	12 
	13 
	14 
	15 

	1 
	1 
	-1.30 
	-1.99 
	-2.34 
	-2.58 
	-2.77 
	-2.12 
	-1.46 
	-0.84 
	-0.42 
	1.54 
	4.70 
	4.41 
	1.65 
	0.21 

	2 
	2 
	-1.30 
	-2.78 
	-3.12 
	-3.37 
	-3.55 
	-2.91 
	-2.24 
	-1.63 
	-1.21 
	0.75 
	3.91 
	3.63 
	0.86 
	-0.58 

	3 
	3 
	-1.99 
	-2.78 
	-3.81 
	-4.06 
	-4.24 
	-3.59 
	-2.93 
	-2.32 
	-1.89 
	0.06 
	3.23 
	2.94 
	0.18 
	-1.26 

	4 
	4 
	-2.34 
	-3.12 
	-3.81 
	-4.40 
	-4.59 
	-3.94 
	-3.27 
	-2.66 
	-2.24 
	-0.28 
	2.88 
	2.60 
	-0.17 
	-1.61 

	5 
	5 
	-2.58 
	-3.37 
	-4.06 
	-4.40 
	-4.83 
	-4.19 
	-3.52 
	-2.91 
	-2.49 
	-0.53 
	2.63 
	2.35 
	-0.42 
	-1.86 

	6 
	6 
	-2.77 
	-3.55 
	-4.24 
	-4.59 
	-4.83 
	-4.37 
	-3.71 
	-3.09 
	-2.67 
	-0.71 
	2.45 
	2.16 
	-0.60 
	-2.04 

	7 
	7 
	-2.12 
	-2.91 
	-3.59 
	-3.94 
	-4.19 
	-4.37 
	-3.06 
	-2.45 
	-2.02 
	-0.07 
	3.10 
	2.81 
	0.05 
	-1.39 

	8 
	8 
	-1.46 
	-2.24 
	-2.93 
	-3.27 
	-3.52 
	-3.71 
	-3.06 
	-1.78 
	-1.36 
	0.60 
	3.76 
	3.48 
	0.71 
	-0.73 

	9 
	9 
	-0.84 
	-1.63 
	-2.32 
	-2.66 
	-2.91 
	-3.09 
	-2.45 
	-1.78 
	-0.75 
	1.21 
	4.38 
	4.09 
	1.32 
	-0.12 

	10 
	10 
	-0.42 
	-1.21 
	-1.89 
	-2.24 
	-2.49 
	-2.67 
	-2.02 
	-1.36 
	-0.75 
	1.63 
	4.80 
	4.51 
	1.75 
	0.31 

	11 
	11 
	1.54 
	0.75 
	0.06 
	-0.28 
	-0.53 
	-0.71 
	-0.07 
	0.60 
	1.21 
	1.63 
	6.75 
	6.47 
	3.70 
	2.26 

	12 
	12 
	4.70 
	3.91 
	3.23 
	2.88 
	2.63 
	2.45 
	3.10 
	3.76 
	4.38 
	4.80 
	6.75 
	9.63 
	6.87 
	5.43 

	13 
	13 
	4.41 
	3.63 
	2.94 
	2.60 
	2.35 
	2.16 
	2.81 
	3.48 
	4.09 
	4.51 
	6.47 
	9.63 
	6.58 
	5.14 

	14 
	14 
	1.65 
	0.86 
	0.18 
	-0.17 
	-0.42 
	-0.60 
	0.05 
	0.71 
	1.32 
	1.75 
	3.70 
	6.87 
	6.58 
	2.38 

	15 
	15 
	0.21 
	-0.58 
	-1.26 
	-1.61 
	-1.86 
	-2.04 
	-1.39 
	-0.73 
	-0.12 
	0.31 
	2.26 
	5.43 
	5.14 
	2.38 


	An attempt was made to classify the observations into their corresponding states by using a single PS parameter. This resulted into 51.78% total misclassification error while using Cycle PS parameter, 65.56% total error while using Offset PS parameter and 64.44% total error while using Split PS parameter. This indicates that using only a single PS parameter to classify observations might not be sufficient and might not provide a good classification accuracy. 

	Three dimensional approach for classifying observations 
	Three dimensional approach for classifying observations 
	Using a three dimensional approach for classifying the observations into their corresponding states can yield to a good classification accuracy, as the additional two dimensions can provide additional knowledge about the exactness of the state. For each observation in the data set, we now have three PS parameters (Cycle, Offset and Split) computed and a state label. This data was now used to perform a classification of the observations into different states. Table 12 represents the discriminant functions ob
	Table 12 Discriminant functions with all three PS parameters 
	State 
	State 
	State 
	Constant 
	Coefficient of Cycle PS parameter 
	Coefficient of Split PS parameter 
	Coefficient of Offset PS parameter 

	1 
	1 
	-1.95628 
	-2.63667 
	-0.12287 
	1.3948 

	2 
	2 
	-20.1762 
	-8.44358 
	-0.1457 
	3.95989 

	3 
	3 
	-48.8765 
	-14.3228 
	2.39014 
	6.00264 

	4 
	4 
	-34.249 
	-11.4188 
	4.05093 
	2.74718 

	5 
	5 
	-38.3097 
	-11.8307 
	4.08771 
	2.52993 

	6 
	6 
	-46.8768 
	-12.1208 
	7.50792 
	1.33831 

	7 
	7 
	-32.8519 
	-8.59532 
	7.87973 
	0.01028 

	8 
	8 
	-29.5407 
	-7.33178 
	8.40406 
	0.28526 

	9 
	9 
	-23.3769 
	-6.80161 
	7.74396 
	1.33424 

	10 
	10 
	-29.8932 
	-8.94012 
	8.56422 
	3.44959 

	11 
	11 
	-21.8678 
	0.72274 
	5.56506 
	1.39598 

	12 
	12 
	-85.6875 
	8.73693 
	3.96261 
	2.50769 

	13 
	13 
	-63.1217 
	4.97033 
	4.01224 
	4.59688 

	14 
	14 
	-24.0363 
	-1.36917 
	6.46263 
	2.83823 

	15 
	15 
	-1.15825 
	-0.16775 
	1.31 
	0.65993 


	Table 13 represents the classification summary obtained from SAS. The total misclassification error based on the three PS parameters was reported to be 23.7%, which is significantly less as compared to the error while using a single PS parameter. It can be observed from Table 13 that ten states have more than 75% of their observations classified correctly (highlighted diagonal elements show correct classification into that state), but certain states show cross classifications. This might be largely due to s
	Table 13 Classification summary 
	18 
	From State 
	From State 
	From State 
	1 
	2 
	3 
	4 
	5 
	6 
	7 
	8 
	9 
	10 
	11 
	12 
	13 
	14 
	15 
	Total 

	TR
	30 100.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	30 100.00 

	TR
	0 0.00 
	30 100.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	30 100.00 

	TR
	0 0.00 
	2 6.67 
	26 86.67 
	2 6.67 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	30 100.00 

	TR
	0 0.00 
	0 0.00 
	1 3.33 
	15 50.00 
	14 46.67 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	30 100.00 

	TR
	0 0.00 
	0 0.00 
	2 6.67 
	14 46.67 
	11 36.67 
	3 10.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	30 100.00 

	TR
	0 0.00 
	0 0.00 
	0 0.00 
	1 3.33 
	0 0.00 
	27 90.00 
	2 6.67 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	30 100.00 

	TR
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	3 10.00 
	19 63.33 
	7 23.33 
	0 0.00 
	1 3.33 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	30 100.00 

	TR
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	9 30.00 
	14 46.67 
	5 16.67 
	2 6.67 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	30 100.00 

	TR
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	3 10.00 
	5 16.67 
	18 60.00 
	4 13.33 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	30 100.00 

	TR
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	2 6.67 
	4 13.33 
	24 80.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	30 100.00 

	TR
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	23 76.67 
	0 0.00 
	0 0.00 
	7 23.33 
	0 0.00 
	30 100.00 

	TR
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	26 86.67 
	4 13.33 
	0 0.00 
	0 0.00 
	30 100.00 

	TR
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	3 10.00 
	27 90.00 
	0 0.00 
	0 0.00 
	30 100.00 

	TR
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	6 20.00 
	0 0.00 
	0 0.00 
	24 80.00 
	0 0.00 
	30 100.00 

	TR
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	1 3.33 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	0 0.00 
	29 96.67 
	30 100.00 

	Total 
	Total 
	30 6.67 
	32 7.11 
	29 6.44 
	32 7.11 
	25 5.56 
	33 7.33 
	33 7.33 
	28 6.22 
	28 6.22 
	31 6.89 
	29 6.44 
	29 6.44 
	31 6.89 
	31 6.89 
	29 6.44 
	450 100.00 
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